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Abstract— Spectrum sensing is a key technical challenge for
the cognitive radio (CR) technology which allows it to access the
spectrum of the licensed systems without causing interference
to them. It is well known that cyclostationarity detectors have
a great advantage of the robustness of noise uncertainty which
significantly degrades the performance and makes its implemen-
tation difficult in energy detectors. This paper pays attention
to the fact that cyclostationarity detector can achieve diversity
gain by manipulating multiple cyclic autocorrelation functions
(CAFs). While most of combining schemes in cooperative sensing
with multiple detectors require the signal to noise power ratio
estimation which is impractical in low SNR regime, combining
with multiple CAFs in single detector based on transmit signal
characteristic can be used. In this paper, three detector schemes
of selection combining (SC), equal gain combining (EGC) and
maximum ratio combining (MRC) with multiple CAFs are
evaluated in additive white Gaussian noise (AWGN) channel
considering the OFDM signal of Japanese digital television
broadcasting (ISDB-T) as a primary system. The numerical
results will show that the cyclic detector based on MRC using
several cyclic frequencies has the best detection performances
even though EGC shows slightly worse performance in assumed
condition.

I. INTRODUCTION

Recently, a cognitive radio (CR) technology, which is a
solution to a problem of spectrum scarcity, has received an
increasing attention [1], [2]. For example, the IEEE 802.22
working group (WG) in the United States (US) has developed
a standard of a fixed wireless regional area network (WRAN)
based on CR technology for operating in the TV bands [3],
[4]. The IEEE WRAN system is considered as the secondary
system which can access the primary bands without creating
harmful interference to the primary systems, e.g., TV systems.
The key challenge in designing WRAN based CR is to detect
the primary signals as reliable as possible, even in very low
signal to noise ratio (SNR) regime. Therefore, spectrum sensor
or signal detector is seen as an essential functionality of the
cognitive WRAN system. Various signal detectors have been
investigated for that purposes such as matched filter, energy
detector, and cyclostationarity detector (hereafter, cyclic de-
tector) utilizing cyclostationarity, etc.

A matched filter is usually considered as an optimal detector
if the primary signal is perfectly known. In addition, this
filter has to precisely demodulate the primary signal by per-
forming timing and symbol synchronization which is almost
impractical in very low SNR regime. An energy detector is
simple to implement and does not need any prior knowledge
about the primary signal but it is difficult to control false

alarm rate because the statistics of the signals, noise and
interference are not distinct in the signal processing [5]. A
cyclic detector utilizing cyclostationarity is seen as a possible
candidate to achieve the sensing requirements in the cognitive
radio system because it does not need a explicit knowledge of
noise distribution thus it is robust to random noise in practice.
However, this technique supposes knowledge of a minimum
characteristic of the primary signal such as modulation type,
symbol rates and so on. Although the cyclic detector has a rich
literature review, the result may have not been directly applica-
ble to the cognitive radio system [6–9]. Recently a number of
studies have extensively applied the cyclostationarity to signal
detection in the cognitive radio application [10–18].

The signal detector can be considered as a binary hypothesis
testing problem; the primary signal is absent (H0) or the
primary signal is present (H1). The test statistic under H0

and H1 can be established by general likelihood ratio test
(GLRT) which introduces the mean square sense consistency
and the asymptotically complex normality of cyclic auto-
correlation function (CAF) of the received signal [9]. The
periodic nature of the cyclostationarity is exhibited by multiple
cyclic frequencies and the CAFs at different cyclic frequencies
are asymptotically uncorrelated [13], [19]. Although multiple
CAFs at single time delay were utilized in [9], H0 or H1

can be determined by mutiple CAFs both at multiple cyclic
frequencies and multiple time delay [12], [13]. In other words,
cyclic detector can achieve diversity gain by manipulating
multiple CAFs. In [10], [11], the detection performances were
evaluated at any arbitrary cyclic frequencies which might result
poor detection performances. And only selection and equal
gain combining were discussed in [12], [13] where compre-
hensive guideline about how to select cyclic frequencies for
evaluating the detection performances was not provided.

While most of combining schemes in cooperative sensing
with multiple detectors require the signal to noise power ratio
(SNR) estimation which is impractical in low SNR regime, a
single detector combining test statistics obtained at multiple
cyclic frequencies based on transmit signal characteristic can
be used. In this paper, the detection performances are evaluated
in three combining schemes of selection combining (SC),
equal gain combining (EGC) and maximum ratio combining
(MRC). The probability of detection (PD) vs. SNR and PD

vs. probability of false alarm (PFA) are examined. The perfor-
mance is evaluated based on numerical simulations observed
in an additive white Gaussian noise (AWGN) by considering



an orthogonal frequency division multiplexing (OFDM) signal
of Japanese digital television broadcasting (ISDB-T) as the
primary users. In addition, we also compare the performance
of cyclic detector with well known energy detector.

The rest of this paper is organized as follows. Preliminar-
ies about cyclostationarity detector including cyclostationary
property of OFDM signal and test statistic and detection rule
for cyclic detector are presented in Sect. 2. In Sect. 3, a
description of signal detection methods based on above three
schemes are presented. The simulation results are illustrated
in Sect. 4. Finally, Sect. 5 concludes this paper.

II. PRELIMINARIES

A. Cyclic Autocorrelation Function (CAF)

Consider a zero mean discrete time signal x[n] = x(nTo),
where To is the sample period. A signal x[n] exhibits a
wide sense second order cyclostationarity if its time varying
autocorrelation function

Rxx[n, l] = E{x[n]x�[n + l]}, (1)

is periodic in terms of a fixed lag l(= 0,±1,±2, · · · ). x[n] for
n = 0, · · · , N − 1 represents a sample of the signal x[n] and
N denotes the number of samples. We assume that Ts is a
period of Rxx[n, l]. Ts corresponds to embedded periodicity
in the signal x[n] e.g., symbol rate, carrier frequency. From
the Fourier series expansion, that is

Rxx[n, l] =
∑

k

Rαk
xx [l]ej2π nk

N , (2)

where αk is called cyclic frequency of x[n] for k =
0,±1,±2, · · · (k is called cyclic frequency index). Typically,
αk is related to symbol rate, modulation scheme and carrier
frequency of x[n]. The Fourier coefficient Rαk

xx [l] is called a
cyclic autocorrelation function (CAF) at cyclic frequency αk

and at time lag l and written by

Rαk
xx [l] = lim

N→∞
1
N

N−1∑
n=0

Rxx[n, l]e−j2π nk
N , (3)

and in practice it can be estimated as

R̂αk
xx [l] =

1
N

N−1∑
n=0

x[n]x�[n + l]e−j2π nk
N (4)

[9]. R̂αk
xx [l] is an estimate of conjugate CAF of Rαk

xx [l] and
� denotes conjugate operator. If αk is the cyclic frequency of
x[n], then R̂αk

xx [l] �= 0. However, R̂αk
xx [l] �= 0 although αk is

not a cyclic frequency of x[n] because R̂αk
xx [l] is computed

using a finite number of samples, N . Therefore, it is quite
difficult to conclude that αk is the cyclic frequency of x[n] by
just checking the value of R̂αk

xx [l] at cyclic frequency αk and at
time lag l. Therefore, it is necessary to determine the statistical
test for the presence and the absence of the cyclostationarity.

B. Cyclic Autocorrelation Function of OFDM signal

Orthogonal Frequency Division Multiplexing (OFDM) is a
key technology in the digital radio broadband transmission
including the TV broadcasting systems. For examples, both
Digital Video Broadcasting Terrestrial (DVB-T) system and
Integrated Services Digital Broadcasting-Terrestrial (ISDB-T)
system use OFDM [20]. Therefore, it is reasonable to assume
that the primary signal is an OFDM signal. The problem of
detecting an OFDM signal is thus very relevant. In this paper,
the OFDM signal of ISDB-T system is considered as the
primary signals. The complex baseband OFDM signal s[n]
can be represented as follows [20].

s[n] =
+∞∑

u=−∞
g[n − uNs] ·

(
Nc−1∑
i=0

d[u, i] · ej2π i−(Nc−1)/2
Nu

n

)
, (5)

where Nc and Nu denote the number of subcarrier and the
number of FFT points, respectively. Ns (= Nu+Ng) becomes
the total number of samples in an OFDM symbol by adding
Ng samples of cyclic prefix. d[n, i] is the transmit information
for i-th subcarrier in n-th symbol, where they are statistically
uncorrelated with each other and modulated by a quadrature
amplitude modulation (64 QAM). g[n] is the rectangular
shaped pulse

g[n] =

{
1, for 0 ≤ n ≤ Ns

0, otherwise
(6)

The autocorrelation function of s[n] can be written by

Rss[n, l] = σ2
dA[l]

∞∑
n=−∞

g[n− uNs] · (7)

g[n − uNs + l],

where σ2
d = E{d[n, i]d�[n, i]} and A[l] can be expressed as

A[l] =
Nc−1∑
i=0

e−j2π[(i−(Nc−1)/2)/Nu]l

=
sin(πlNc/Nu)
sin(πl/Nu)

. (8)

From (7) it is clear that the autocorrelation function is peri-
odic with period of Ns at lag l. Thus the OFDM signal is
cyclostationary with cyclic frequency

A = {αk | αk =
k

Ts
=

k

NsTo
, k = 0,±1,±2, · · · }. (9)

The CAF of g[n], Rα
gg[l], can be calculated by Fourier series

expansion of (7) by

Rαk
gg [l] =

{
sin[παk(Ns−|l|)]

πk , for | l |≤ Ns

0, otherwise
(10)

Hence, Rαk
ss [l] can therefore be written as

Rαk
ss [l] =

{
σ2

dA[l] sin[παk(Ns−|l|)]
πk , for | l |≤ Ns

0, otherwise
(11)



Fig. 1. Cyclic detector using cyclostationary property.

(11) establishes two important facts. First, Rαk
ss [l] �= 0 since

A[l] �= 0 when l = ±Nu and it is noted that Rαk
ss [l] has the

largest CAFs among those at other lags. Second, the OFDM
signal must insert the guard interval at the start of the useful
OFDM symbol otherwise Rαk

ss [l] = 0 because when Ns = Nu

and l = Nu leading to sin[παk(Ns− | l |)] = 0. Therefore, the
OFDM signal induces cyclostationarity when the cyclic prefix
is used in the OFDM waveform and Rαk

ss [l] has the largest
CAFs when l is equal to Nu.

C. Statistical Test of Cyclic Detector

In this paper, we basically follow the same approach as [9].
In OFDM signals, cyclic frequencies appear only at the time
lags of integer multiples of useful symbol duration (τ = Tu,
namely l = Nu), thus we consider CAFs in single time lag at
l = Nu where the CAFs are dominant, although Dandawate’s
approach generally used CAFs in multiple time lags. By using
the mean square sense consistency and asymptotical complex
normality of CAF of the received signal, the statistical test
based on GLRT for the presence and the absence of the
cyclostationarity has been established as follows [9]

T αk [l] = N · r̂αk
xx [l] · Σ̂αk

rr [l]−1 · r̂αk
xx [l]T , (12)

where r̂αk
xx [l] is a row vector for single CAF which is defined

by

r̂αk
xx [l] = [Re{R̂αk

xx [l]}, Im{R̂αk
xx [l]}], (13)

and Σ̂αk
rr [l] is the estimation of the covariance matrix which

can be derived analytically as follows [9]

Σ̂αk
rr [l] =

⎡
⎢⎢⎣

Re
{

Ŝ
αk
f [l]+Ŝ

αk�

f [l]

2

}
Im
{

Ŝ
αk
f [l]−Ŝ

αk�

f [l]

2

}

Im
{

Ŝ
αk
f [l]+Ŝ

αk�

f [l]

2

}
Re
{

Ŝ
αk�

f [l]−Ŝ
αk
f [l]

2

}
⎤
⎥⎥⎦ ,

(14)

where the cyclic spectra

Ŝαk

f [l] =
1

NL

(L−1)/2∑
s=−(L−1)/2

WL[s]FN,l[k − s]

· FN,l[k + s], (15)

and

Ŝαk�
f [l] =

1
NL

(L−1)/2∑
s=−(L−1)/2

WL[s]F �
N,l[k + s]

· FN,l[k + s], (16)
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Fig. 2. Distribution of T αk [l] under H0 and H1 along with the threshold
γ

where WL[s] is a smoothing spectral window (e.g. Kaiser
window) and FN,l[k] is the Fourier transform of f [n] =
x[n]x�[n + l] which is defined as,

FN,l(k) =
N−1∑
n=0

x[n]x�[n + l]e−j2π nk
N . (17)

D. Detection Rule of Cyclostationarity Detector

The signal detection problem can be modeled as two binary
hypotheses test as follows,{

H0 : x[n] = w[n] : signal absence

H1 : x[n] = s[n] + w[n] : signal presence
, (18)

where x[n] represents the sample of the received signal, s[n]
is the primary signal which may be modeled as a zero mean
cyclostationary signal and w[n] denotes the complex additive
white Gaussian noise (AWGN) process. The detection problem
aims at determining which of H0 or H1 is the most likely.

Figure 1 depicts the detection algorithm using cyclostation-
arity with the test statistic T αk [l] in (12). In order to design
the cyclic detector, at first, the distribution of T αk [l] under
H0 should be known so that the threshold value γ can be
determined for a specified probability of false alarm (PFA).
The signal detection mechanism can be stated as follows. The
signal presence and absence are determined by comparing the
test statistic of T αk [l] against a predefined threshold γ. When
T αk [l] ≥ γ, the primary signal is decided to be present and
when T αk [l] < γ the primary signal is decided to be absent.

Figure 2 illustrates the distribution of T αk [l] under H0 and
H1. As described in Sect.II, under H0 it is assumed that each
elements of r̂αk

xx [l] is asymptotical Gaussian random variable
with zero mean, thus T αk [l] follows chi-square distribution
with degree of two, namely

lim
N→∞

T αk [l] D= χ2
2, (19)

regardless of the noise variance. On the other hand, under
H1, it has been shown that T αk [l] asymptotically follows non-



central chi-square distribution with degree of two, namely

lim
N→∞

T αk [l] D= χ2
2(N · rαk

xx [l] · Σαk
rr [l]−1 · rαk

xx [l]T ) (20)

[9], where rαk
xx [l] and Σαk

xx [l] denote true value of CAF and
covariance matrix. As can be seen, there is always a tradeoff
between having a high probability of detection (PD) and
having a low probability of false alarm PFA. This tradeoff
can be made by changing the detection threshold. PFA can be
derived as follows

PFA = Pr{T αk [l] > γ | H0}. (21)

The decision threshold γ can be defined as

γ = F−1
2 (1 − PFA) , (22)

where F−1
2 (γ) is the inverse function of F2(γ) =∫ γ

0
1
2 exp(− y

2 )dy, the cumulative distribution function of chi-
square distribution with degree of two. Once the threshold
has been set, one can theoretically evaluate the probability of
detection such that

PD = Pr{T αk [l] ≥ γ | H1}. (23)

However, in reality, the Dandawate’s approach assumed to
use the asymptotical property of the test statistic where there
was no consideration of the SNR, but the SNR significantly
affects on the distribution in practice. Further this asymptotic-
ity makes the theoretical analysis of the performance in terms
of SNR quite difficult because the test statistic can use only
limited number of samples.

III. COMBINING METHODS WITH MULTIPLE CYCLIC

SPECTRUM COMPONENTS

As mentioned above, the periodic nature of the cyclostation-
arity in OFDM signal is exhibited by multiple cyclic frequen-
cies. Thus, H0 or H1 can be determined by using multiple
CAFs at multiple cyclic frequencies which are asymptotically
uncorrelated with each other. In other words, cyclic detector
can achieve diversity gain by manipulating multiple CAFs,
e.g., at α1 = 1

Ts
, α2 = 2

Ts
, · · · ,αNα = Nα

Ts
. In this scheme,

a secondary user combines multiple test statistics of T αk [l]
over different cyclic frequencies, which are also asymptotically
uncorrelated non-central chi-square random variables [13],
[19]. In other word, a weighted sum extension of test statistics
can be used as

T Ā =
Nα∑

k=−Nα

wkT αk = T T w, (24)

where

T = [T α1 , T α2 , · · · , T αNc ]T , (25)

w = [w1, w2, · · · , wNα ]T , (26)

where wk is real-valued weight coefficient. Ā (⊂ A) denotes

Ā = {αk | k = 0,±1,±2, · · · ,±Nα}. (27)

A. Selection Combining (SC)

The key idea behind the SC technique is that the detector
monitors the value of T αk [l] at all 2Nα + 1 spectral lines
at a time and select the spectral lines with the highest
decision statistic. Thus, the test statistic for SC scheme can
be constructed as

T Ā
SC[l] = max

Ā
T αk [l] (28)

The implementation of SC technique can be found in [21].
Under H0, using the cumulative distribution function (CDF)
of T Ā

SC[l] for given independent {T αk [l]}Nα

k=−Nα
variables, the

PFA can be written as

PFA = 1 − F2 (γSC)2Nα+1
, (29)

where γSC is the decision threshold for SC which can be
written as

γSC = F−1
2

(
(1 − PFA)

1
2Nα+1

)
. (30)

B. Equal Gain Combining (EGC)

Instead of choosing maximum test statistic, combination of
test statistics with equal gain is considered. Under H0, the
test statistic at each CAF are assumed to be independent. In
the test statistic of EGC technique is calculated with wk =
1/

√
2Nα + 1 for all k. Under H0 the test statistic of EGC

can be approximately written as

T Ā
EGC[l] =

1√
2Nα + 1

X, (31)

where the random variable X ∼ X 2
2(2Nα+1). The threshold

γEGC can be given as PFA = Pr{T Ā
EGC[l] > γEGC | H0}.

Similar to (22), the γEGC can be calculated as

γEGC = F−1
2(2Nα+1)(1 − PFA), (32)

where F−1
2(2Nα+1) is the inverse function of F2(2Nα +1), the

cumulative distribution function of chi-square distribution with
degree of 2(2Nα + 1).

C. Maximum Ratio Combining (MRC)

In optimizing the PD performance with multiple test statis-
tics, there can be some techniques, e.g., the optimization of
combined PDF (probability density function) both for H0 and
H1 simultaneously. To measure the effect of the PDF on the
detection performance, a modified deflection coefficient was
introduced in [23]. In cyclic detector T αk follows approxi-
mately chi-square distribution with degree of two under H0,
and non-central chi-square distribution of χ2

2(T αk
0 ) under H1

where T αk
0 denotes a asymptotic test statistic value. However

the distribution under H1 is quite difficult to formulate because
the non-centrality strongly depends on the SNR as well as the
computational gain. It should be noted that Dandawate’s ap-
proach assumed the asymptotical property of the distribution,
thus there was no consideration of any noise contribution. In
this paper, we propose an alternative method of maximum
ratio combining to enhance the performance, that is, spectrum
sensing scheme using CAF values of transmit signal.
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In multiple antenna system, the maximum ratio combining
technique is a commonly used technique to combine the output
signal maximizing the SNR with multiple received signals.
As applied in [22], MRC scheme has been proposed for
cooperative sensing among multiple sensors. However most
of combining schemes in cooperative sensing with multiple
detectors require the signal to noise power ratio (SNR) esti-
mation which is impractical in low SNR regime and fading
environment. On the other hand, a single detector combining
test statistics obtained at multiple cyclic frequencies can be
based on transmit signal characteristic because the fluctuation
of individual cyclic frequency spectrum taken at an instant
bears no straightforward relation to the propagation channel
effect.

A simple strategy in MRC detector is to combine the output
with multiple test statistics at different cyclic frequencies
according to the non-centrality value of the distribution in
(20), that is, magnitude ratio of asymptotic test statistic of
T αk

0 [l] = Nrαk
xx [l]Σαk

rr [l]−1rαk
xx [l]T which is a quadratic value

proportional to |Rαk
ss |2. Namely, we can obtain the MRC

weight as

wk =
T αk

0 [l]√∑Nα

−Nα
(T αk

0 [l])2
, (33)

where wT w = 1. Practically the MRC weight can be obtained
by using the theoretical calculation of CAFs with known
primary signal because (33) requires only the ratio among
different CAFs. The CAFs for an OFDM signal was described
in Sect. II and |Rαk

ss |2 of (11) can be actually used.
Under H0, the test statistic combined by MRC is

T Ā
MRC[l] =

Nα∑
k=−Nα

wkT αk [l], (34)

where T αk ∼ χ2
2. (34) becomes weighted sum of the central

chi-square distribution. In order to calculate the threshold

value the closed form expression of PDF for (34) is needed.
Instead of the exact expression, (34) can be alternatively
approximated by

T Ā
MRC[l] ∼ a · χ2

b , (35)

as applied in [24], where a and b are the scale factor and the
approximated degree of freedom. By using the first and second
moments of (34) and (35) as

E[T Ā
MRC[l]|H0] =

Nα∑
k=−Nα

wk · 2 = a · b, (36)

Var[T Ā
MRC[l]|H0] =

Nα∑
k=−Nα

w2
k · 4 = a2 · 2b, (37)

we can obtained a and b as

a =
Nα∑

k=−Nα

w2
k/

Nα∑
k=−Nα

wk, (38)

b = 2

(
Nα∑

k=−Nα

w2
k

)2

/

Nα∑
k=−Nα

wk. (39)

Figure 3 shows an example of the approximated distribution
that is combined by 13 central chi-square distributions with
degree of two under H0 where wT w = 1. As can be seen,
this approximation provides sufficient accuracy to determine
threshold value corresponding to the false alarm probability
than that of equally-combined distribution.

Similarly to (22), the γMRC can be calculated as

γMRC = a · F−1
b (1 − PFA), (40)

where F−1
b is the inverse CDF of Fb, chi-square distribution

with degree of b.

IV. SIMULATION RESULTS

A. Parameters

The detail of ISDB-T mode 3 OFDM signal specification is
provided in [20]. Single ISDB-T channel basically consists
of 13 OFDM segments for wide band and 1 or 3 OFDM
segments for narrow band system. Now, this system serves
in the frequency bands from 470 MHz to 770 MHz with the
bandwidth of 5.572 MHz in Japan. In this paper, the ISDB-
T Mode-3 signal which includes all 13 OFDM segments is
considered. The OFDM parameters are presented in Table I.
In addition, Table II shows the simulation parameters used
for estimating the R̂αk

xx [l] and Σ̂αk
rr [l] in constructing the test

statistic T αk [l].

B. CAF Estimation

Now, the CAF estimation in (4) is compared with the ideal
CAF of the OFDM signal using (11). The R̂αk

xx [l] in (4) is
computed via FFT with size N and a fixed time lag l = Nu

as shown in Table II. The normalized spectrum of the ideal
CAF and its estimation results are shown in Fig. 4 (a) and (b),
respectively, where they are the square values of the magnitude
and it is shown that their peaks appear at αk = k/Ts, k =



TABLE I

OFDM SIGNAL PARAMETERS OF ISDB-T MODE-3

Parameters Values

Modulation 64 QAM

OFDM useful symbol duration (Tu) 1008 μs

OFDM guard interval (Tg) 126 μs (= Tu/8)

OFDM total symbol duration (Ts) 1134 μs (= Tu + Tg)

Number of sub-carriers (Nc) 5617

Carrier separation (Δf ) 0.9920 kHz (= 1/Tu)

Sampling frequency (fs) 8.127 MHz

FFT size (NFFT) 8192

TABLE II

SIMULATION PARAMETERS FOR ESTIMATING TEST STATISTIC

Parameters Values

Data length (N ) 10 symbols (= 10Ns)

Time lag (l) 8192 (=Nu)

Kaiser window parameter L = 65537, β = 1

0,±1,±2, · · · . Thus OFDM signal exhibits cyclostationarity
at cyclic frequencies αk = k/Ts as expected. To estimate the
T αk [l], first, we compute the row vector in (13). Second, we
compute the Σ̂αk

rr [l] estimation in (14) by using (15) and (16).
Here the non-conjugate and conjugate cyclic spectra of f [n]
in (15) and (16) can be computed via FFT with size N using
Kaiser window with parameters shown in Table II. Finally, the
test statistic T αk [l] can be obtained by substituting (13) and
(14) into (12). Fig. 4(c) shows the test statistic (12) without
noise and it is seen that the T αk [l] represents Fig. 4(a) well
as expected. Further, as can be seen, some cyclic frequencies
cannot be utilized because they might be quite lower than the
decision threshold. For example, when | k |> 7 all the spectral
lines are disappeared. Therefore, cyclic detector should detect
the OFDM signal at αk with | k |< 7 in order to gain a better
detection performance.

C. Detection Performances

In our simulations, the noise level is fixed from trial to trial
and the SNR is defined as SNR = 10 log10

(
σ2

s

σ2
w

)
where σ2

s

and σ2
w are the variances of the signal and noise, respectively.

Detection was carried out using a signal recorded for a dura-
tion of 10 OFDM symbols (11.34 ms). The PFA is specified at
10% as recommended in IEEE 802.22 working group and the
simulation was carried out over 1, 000 realizations. Figure 5
shows the detection probabilities PD vs. SNR for a single
cyclic frequency. The performance is examined for several
choices of αk for illustrating the impact of this parameter
on the detector. The result shows that the detection perfor-
mance highly depends on the choice of cyclic frequencies. As
expected, the detection probability at α0 and α1 is the best
comparing with those at the other cyclic frequencies. The PD

approaches to 1 when the SNR gets close to −10 dB with the
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Fig. 4. Normalized power spectrum of (a) Ideal CAF, (b) CAF estimation,
(c) test statistic where l = Nu.

sensing time about 11.34 ms.
Figure 6 illustrates the performance comparison between the

cyclic detectors with SD (single detector), SC, EGC and MRC
where the performance of the energy detector is also plotted
as a reference. In this simulation, the multiple cyclic detector
combined the test statistic with 13 CAFs of −α6 ∼ α6. First,
we can observe that MRC has the best performance which
is slightly better than that of EGC. It means that there is
no significant improvement in MRC comparing with EGC.
The reason is that the combining effect in very low SNR
regime does not offer significant improvement in output SNR.
However we can find that PDF itself gets improved if the SNR
gets higher, but unfortunately it doesn’t directly contribute to
PD because it has already converged on unity.

Second, the performance of the energy detector were in-
vestigated under different values of noise uncertainty level,
ρ, where ρ = 0 and ρ = .5. ρ = 0 means that the noise
variance is perfectly known, ρ = .5 dB means that the noise
variance estimation has error of .5 dB in maximum [25], [26].
The result shows that the energy detector outperforms that of
the cyclic detector as long as the noise variance is perfectly
known. However, the performance of the energy detector is
significant degraded under the noise uncertainty. For example,
the energy detector cannot detect the signal when the SNR is
below −8 dB for the noise variance error of .5 dB otherwise
the performance of the cyclic detectors are better than that of
the energy detector. It is obvious that the robustness against
the noise uncertainty of the cyclic detectors is a big advantage
over the energy detection in practical situation.

The detection probabilities of the multiple cyclic detector
which is based on MRC is depicted in Fig. 7. The result shows
that the performance is improved as long as Nα is increased.
However, there was quite small difference in cases of Nα > 7.
Thus, we can conclude that Nα = 7 is sufficient to consider
for the multiple cyclic detector. For the sensing time of 11.34
ms (10 OFDM symbols), it is seen that the multiple cyclic
frequency detector can detect the signal at SNR of −14 dB
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Fig. 5. Detection probabilities of a single cyclic detector for each cyclic
frequency with 10 OFDM symbols and PFA = 10% where the results are
obtained from simulations over 1, 000 trials.
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Fig. 6. Comparison between the energy detector (ED) and the single cyclic
detector (SD), multiple cyclic detectors of SC, EGC and MRC; It shows
the probability of detection PD vs. SNR obtained over 1, 000 trials and
the probability of false alarm PFA of 10%. The performance of the energy
detector was evaluated for ρ = 0 dB and ρ = 0.5 dB.

(PD > 90%).

V. CONCLUSION

In this paper, three combining methods including SC, EG
and MRC in cyclic detector for primary OFDM signal work-
ing in an AWGN channel have been examined. Herein, we
introduced the reduced scheme of Dandawate’s algorithm that
employs single CAF at time lag l = Nu. We also proposed
maximum ratio combining method based on transmit signal
characteristic, which is easily calculated from the closed-form
solution. From the PD evaluation results, we found that MRC
had the best performance even if it was just slightly improved
over EGC. It is also seen that the combining effect in very low
SNR regime did not offer significant improvement in output
SNR. For the sensing time of 11.34 ms (10 OFDM symbols),
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Fig. 7. Detection probabilities of the MRC detector combined by each cyclic
frequency set with 10 OFDM symbols and PFA = 10% where the results
are obtained from simulations over 1, 000 trials.

the multiple cyclic detector could detect the signal at SNR
of around −14 dB. This work is being expected to be an
application to IEEE 802.22 WRAN system.

REFERENCES

[1] S. Haykin, “Cognitive Radio: Brain-Empowered Wireless Communica-
tion,” IEEE J. Selected Areas in Commun., vol. 23, no. 2, pp. 201–221,
Feb. 2005.

[2] J. Mitola, “Cognitive radio: Making software radio more personal,” IEEE
Personal Comm., Vol. 6, No. 4, pp. 13–18,Aug. 1999.

[3] IEEE 802.22 Working Group on Wireless Regional Area Network,
http://www.ieee802.org/22/.

[4] C. Cordeiro, K. Challapali, D. Birru, S. Shankar, “IEEE 802.22: the
first worldwide wireless standard based on cognitive radio,” 2005 First
IEEE International Symposium on New Frontiers in Dynamic Spectrum
Access Networks (DySPAN 2005), pp. 328–337, Nov. 2005.

[5] H. Tang “Some Physical Layer Issues of Wide-band Cognitive Radio
Systems,” in proc. 2005 First IEEE International Symposium on New
Frontiers in Dynamic Spectrum Access Networks (DySPAN 2005), pp.
151–159, Nov. 2005.

[6] A. Gardner, Cyclostationarity in Communications and Signal Processing,
IEEE Press, 1994.

[7] A. Gardner, C.M. Spooner, “Signal Interception: A Unifying Theoretical
Framework for Feature Detection,” IEEE Trans. Commun., vol. 36, no.
8, pp. 897–906, Aug. 1988.

[8] A. Gardner, C.M. Spooner, “Signal Interception: Performance Advan-
tages of Cyclic-Feature Detectors,” IEEE Trans. Commun., vol. 40, no.
1, pp. 149–159, Jan. 1992.

[9] V. Dandawate, B. Giannakis, “Statistical Tests for Presence of Cyclosta-
tionarity,” IEEE Trans. Signal Processing, vol. 42, no. 9, pp. 2355–2369,
Sept. 1994.

[10] M. Oner and F. Jondral, “Cyclostationarity Based Air Interface Recog-
nition For Software Radio Systems,” Radio and Wireless Conference,
pp. 263 - 266, Sept. 2004.

[11] M. Oner and F. Jondral, “Extracting the Channel Allocation Information
in a Spectrum Pooling System Exploiting Cyclostationarity,” in Proc.
15th IEEE International Symposium on Personal Indoor and Mobile
Radio Communications (PIMRC), pp. 551–555, Sept. 2004.

[12] J. Lunden, V. Koivunen, A. Huttunen, H. Vincent Poor, “Spectrum
sensing in Cognitive Radios Based on Multiple Cyclic Frequencies,”
in Proc. 2nd International Conference on Cognitive Radio Oriented
Wireless Networks and Communications (CrownCom), pp. 37–43, Aug.
2007.

[13] J. Lunden, V. Koivunen, A. Huttunen, H. Vincent Poor, “Collaborative
Cyclostationary Spectrum Sensing for Cognitive Radio Systems,” IEEE
Trans. Signal Processing, vol. 57, no. 11, pp. 4182–4195, Nov. 2009.



[14] N. Khambekar, L. Dong, V. Chaudhary, “Utilizing OFDM Guard Interval
for Spectrum Sensing,” in Proc. IEEE WCNC 2007, pp.38–42, March
2007.

[15] K. Kim, I. Akbar, K. Bae, U. Jung-sun, C. Spooner, J. Reed, “Cyclosta-
tionary Approaches to Signal Detection and Classification in Cognitive
Radio,” in Proc. International Symposium on New Frontiers in Dynamic
Spectrum Access Networks (DySPAN 2007), pp.212–215, April 2007.

[16] P. Sutton, J. Lotze, K. Nolan, L. Doyle, “Cyclostationary Signature
Detection in Multipath Rayleigh Fading Environments”, in Proc. 2nd In-
ternational Conference on Cognitive Radio Oriented Wireless Networks
and Communications (CROWNCOM 2007), August, 2007.

[17] Z. Ye, J. Grosspietsch, G. Memik, “Spectrum Sensing Using Cyclo-
stationary Spectrum Density for Cognitive Radios,” in Proc. IEEE
Workshop on Signal Processing Systems 2007, pp.1–6, Oct. 2007

[18] J. Lee, J. Yoon, J. Kim, “A New Spectral Correlation Approach to
Spectrum Sensing for 802.22 WRAN System,” in Proc. Intelligent
Pervasive Computing 2007, pp.101–104, Oct. 2007.

[19] H. Rowe, Signals and Noise in Communication Systems. London, U.K.:
Van Nostrand, 1965.

[20] “Transmission System for Digital Terrestrial Television Broadcasting,”
ARIB STD-B31 Version 1.5, Association of Radio Industries and
Businesses, 2003 .

[21] F. Digham, M. Alouini, M. Simon, “On Energy Detection of Unknown
Signals Over Fading Channels,” IEEE Trans. Commun., vol. 55, no. 1,
pp. 21-24, Jun. 2007.

[22] J. Ma and Y. G. Li, “Soft Combination and Detection for Coopera-
tive Spectrum Sensing in Cognitive Radio Networks,” in Proc. IEEE
GLOBECOM 2007, pp. 3139-3143, Nov. 2007.

[23] Z. Quan, S. Cui and A. Sayed, “An Optimal Strategy for Cooperative
Spectrum Sensing in Cognitive Radio Networks,” in proc. IEEE GLOBE-
COM’07, 2007.

[24] Batu K. Chalise and Luc Vandendorpe, “A Multiuser MIMO Transmit
Beamformer Based on the Statistics of the Signal-to-Leakage Ratio,”
EURASIP J. Wireless Commun. Networking, vol. 2009, Article ID
679430, 2009.

[25] S. Shellhammer, “Numerical Spectrum Sensing Requirements,” IEEE
802.22-06-0088r0, June. 2006.

[26] R. Tandra, A. Sahai, “SNR Walls for Signal Detection,” IEEE Journal
of Selected Topics in Signal Processing, vol. 2, no. 1, pp. 4–17, Feb.
2008.


