

Building Numerical Simulation Environment for WBAN Propagation

Jun-ichi Naganawa

Ph.D student, Tokyo Institute of Technology

2012/12/13 FinJap2 Wrap-up Seminar, Tokyo Denki University

Department of International Development Engineering (IDE) Tokyo Institute of Technology

Background

Department of International Development Engineering (IDE) Tokyo Institute of Technology

MGREG 東京工業大 Tokyo Institute of Techno

Numerical Simulation of WBAN Channel

WBAN (Wireless Body Area Network)

- Mainly used for vital data monitoring
- Links between on-body sensors and coordinators are studied
- Numerical simulation
- Simulate dynamic fluctuation of pathloss
- Electric field around human body is calculated using FDTD method for each frames

Challenges in Propagation Simulation

Antenna De-embedding

Separated simulation for antenna and body

Importance

- For appropriate simulation parameter
 - E.g. mesh size of FDTD method
 - » Human body = bigger mesh size
 - » Antenna = smaller mesh size
- For optimization of antenna design
 - Simulation of channel doesn't have to be repeated

Embedded simulation

De-embedded simulation

Purpose of this presentation

To present:

- 1. Antenna de-embedding framework
- 2. Demonstration using 3 electric dipoles
 - Dynamic pathloss simulation for walking motion
- 3. Preliminary study for more general cases- Excitation of spherical waves using multi-poles in FDTD grid

1. Antenna De-embedding Framework

Antenna De-embedding Framework

- Utilization of spherical waves
- ➤ Theory
 - Any antenna can be modeled as a summation of spherical waves K_i

J is finite number determined by the size of antenna
 » smaller antenna → smaller J

Antenna De-embedding Framework

Demonstration using 3 electric dipoles

Simulation scenario

Simulation scenario

- Walking motion
 - 1sec divided by 30 frames
- ➤ Topology
 - Transmitter: Neval
 - Receiver :

Head, Arm, Hand, Chest, Thigh, Ankle

Pathloss fluctuation is calculated

30 sec

Simulation Scenario

- Simulation scenario
 - Antenna
 - Infinitesimal dipole directing 1, 2, or 3 (→)
 - Antenna combination
 - Examine
 3 x 3 = 9 combinations

1.Normal to the ground (long axis)2 Tangential to the ground

2

30

- 2.Tangential to the ground (short axis)
- 3.Normal to the human body

FDTD Method is used We developed In-house code using GPGPUs Simulation parameters

Frequency	403.5 MHz
Analytical space	170 x 400 x 250 (1.1λ x 2.7λ x 1.7λ)
Cell size	0.5 cm x 0.5 cm x 0.5 cm (6.72 x 10 ⁻³ λ)
Absorbing boundary	10 layers PML
Time step	0.01 nsec
# of steps	5000

Simulation result

PL₃₃ is smallest

- Transmitter and receiver should be both normal to the human body
- PL₁₃, PL₃₁, PL₂₃, PL₃₂ are also smaller than others
- Either of the transmitter or the receiver should be normal to the human body.
- This trend is same in other links

Simulation result

Simulation result

19

Towards more general case

Towards general case

How to generate spherical wave in FDTD is the key issue

Approach

Control Electric and magnetic current on FDTD grid to radiate desired spherical wave.

Approach in Detail

- Step1: setup of dipole array
 - Dipoles : 1, 2, 3,, N
 - Excitation weights $\boldsymbol{w} = [w_1 w_2 \dots w_N]$
 - Observation points $(\theta_1, \phi_1) \dots (\theta_{N_{\theta}}, \phi_{N_{\phi}})$
- Radiation pattern of dipole arrays $E_c =$ $\begin{bmatrix} E_{\theta}^{1}(\theta_{1},\phi_{1}) & \cdots & E_{\theta}^{N}(\theta_{1},\phi_{1}) & E_{\phi}^{1}(\theta_{1},\phi_{1}) & \cdots & E_{\phi}^{N}(\theta_{1},\phi_{1}) \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ E_{\theta}^{1}(\theta_{N_{\theta}},\phi_{N_{\phi}}) & \cdots & E_{\theta}^{N}(\theta_{N_{\theta}},\phi_{N_{\phi}}) & E_{\phi}^{1}(\theta_{N_{\theta}},\phi_{N_{\phi}}) & \cdots & E_{\phi}^{N}(\theta_{N_{\theta}},\phi_{N_{\phi}}) \end{bmatrix}$ $E_{\theta}^{N}(\theta_{N_{\theta}}, \phi_{N_{\phi}})$ $(\theta_{N_{\theta}}, \phi_{N_{\phi}})$ $\mathbf{E}^{N}_{\theta}(\theta_{2},\phi_{2}) \quad \mathbf{\cdots}$ (θ_2, ϕ_2) $E_{\theta}^{N}(\theta_{1}, \phi_{1})$ (θ_1, ϕ_1)

Approach in Detail

Step 2: setup of spherical wave

• Desired spherical wave

$$\boldsymbol{K}_{smn}(\theta,\phi) = K_{\theta,smn}(\theta,\phi)\hat{\theta} + K_{\theta,smn}(\theta,\phi)\hat{\phi}$$

• Desired E-fields

$$\boldsymbol{E}_{t} = [K_{smn}(\theta_{1}, \phi_{1}) \dots K_{smn}(\theta_{1}, \phi_{1})]^{T}$$

Approach in Detail

Step 3: Calculating excitation coefficients

• Relationship to be satisfied

$$\boldsymbol{E}_{c}\boldsymbol{w}=\boldsymbol{E}_{t}$$

• Derive excitation weights by using pseudo-inverse

$$\boldsymbol{w} = \boldsymbol{E}_c^{-1} \boldsymbol{E}_t$$

Example

Parameters

- > FDTD cel size = 1/20 λ
- Array size = 5 cells
- > Observation distance = 10λ
- > Obsdrvation Points, $N_{\theta} = 20$, $N_{\phi} = 40$
- Number of dipoles = 990
 - Magnetic and Electric
 - Consider the dipoles inside cube

Accuracy

Maximum error at observation points

Summary

- Antenna de-embedding for BAN Channel Modeling
- 1. Antenna de-embedding framework
 - 1. Antenna expansion using spherical waves
 - 2. Pathloss simulation between modes
 - 3. Pathloss Synthetis
- 2. Demonstration using 3 electric dipoles
 - Dynamic pathloss simulation for walking motion
- 3. Preliminary study for more general cases
 - Excitation of spherical waves using multi-poles in FDTD grid